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Pattern Recognition of Sleep in Rodents Using
Piezoelectric Signals Generated by Gross

Body Movements
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Abstract—Current research on sleep using experimental an-
imals is limited by the expense and time-consuming nature of
traditional EEG/EMG recordings. We present here an alternative,
noninvasive approach utilizing piezoelectric films configured as
highly sensitive motion detectors. These film strips attached to
the floor of the rodent cage produce an electrical output in direct
proportion to the distortion of the material. During sleep, move-
ment associated with breathing is the predominant gross body
movement and, thus, output from the piezoelectric transducer
provided an accurate respiratory trace during sleep. During wake,
respiratory movements are masked by other motor activities. An
automatic pattern recognition system was developed to identify
periods of sleep and wake using the piezoelectric generated signal.
Due to the complex and highly variable waveforms that result
from subtle postural adjustments in the animals, traditional signal
analysis techniques were not sufficient for accurate classification
of sleep versus wake. Therefore, a novel pattern recognition
algorithm was developed that successfully distinguished sleep
from wake in approximately 95% of all epochs. This algorithm
may have general utility for a variety of signals in biomedical and
engineering applications. This automated system for monitoring
sleep is noninvasive, inexpensive, and may be useful for large-scale
sleep studies including genetic approaches towards understanding
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sleep and sleep disorders, and the rapid screening of the efficacy
of sleep or wake promoting drugs.

Index Terms—Activity, automated, behavior, classification, in-
strumentation, mice, noninvasive, respiration, wake.

I. INTRODUCTION

WE spend approximately one third of our lives asleep,
yet the basic functions of sleep are unknown. Further,

sleep disturbances afflict hundreds of millions of individuals
throughout the world [1]. A serious limitation to progress in un-
derstanding fundamental questions of sleep and sleep disorders
is technological. Current sleep analysis techniques use electroen-
cephalograms (EEG) and electromyograms (EMG) as input.
EEG/EMG recording in rodents (the dominant experimental or-
ganisms)requiresextensivesurgery, recovery,andtheattachment
of cables to the subjects during the experiments. We developed
an alternative technique for monitoring sleep in rodents that is
noninvasive, inexpensive, and could be used for large-scale sleep
studies. Large-scale studies in rodents can take advantage of the
huge breakthroughs in mouse and human genetics to find genes
that influence sleep and sleep disorders and that may in turn
shed light on the basic functions of sleep, or provide new drug
targets for better sleep and wake-promoting drugs.

Our system utilizes piezoelectric materials configured as
highly-sensitive motion detectors incorporated into the bottom
of an animal cage. Gross body movements change in a pre-
dictable manner with changes in arousal state. Wakefulness is
characterized by high frequency and erratic movements associ-
ated with volitional movement. This activity pattern produces
a chaotic output from the piezoelectric transducer that we
designate here as “irregular.” During sleep, the primary gross
body movements are related to respiration and are rhythmic
in nature, producing a quasi-periodic wave pattern from the
piezoelectric transducer that we refer to as “regular.”

Previous work by others has demonstrated the use of move-
ment and respiratory patterns to discriminate sleep versus
wake in humans and experimental animals using static charge
sensitive beds or electronic activity monitors [2], [3]. Computer
scoring of these signals was also accomplished [4]. However,
none of these methods was developed for high-throughput sleep
scoring, especially in mice, where many large-scale genetic
screening programs are now underway [5]. Piezoelectric mate-
rials are more sensitive and more conducive to these attempts.
Other behavioral monitoring systems that determine gross
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Fig. 1. Simultaneous output signals of the piezoelectric transducer (top) and
impedance pneumograph (bottom) demonstrated that the piezoelectric signal
provided an accurate respiratory trace during sleep in rodents. Note the 7-s pe-
riod of apnea in the middle of this period that is accurately reflected in both
recordings.

Fig. 2. Simultaneous EEG, EMG and piezoelectric recordings from an adult
mouse. This segment is composed primarily of SWS interrupted by a 15–s wake
bout about two thirds into the recording period. Note the corresponding changes
in the EEG, EMG and piezo recordings. The EEG shows the typical shift from
higher amplitude, lower frequency SWS to wake during the 15-s wake bout,
while the piezo signal changes from a more regular pattern to erratic. In fact,
the piezo signal is the easiest of the three to score for sleep and wake.

motor activity by infra-red methods, photo-beam breaking, or
wheel running, are clearly inadequate for sleep scoring since a
considerable amount of waking behavior (such as grooming) is
not detected as movement or activity.

Sleep can be further classified as slow wave sleep (SWS) or
rapid-eye-movement-sleep (REMS) by standard EEG/EMG cri-
teria [1]. Our system does not differentiate between SWS and
REMS, as both produce regular patterns in the piezoelectric
signal, but it does distinguish Wake from Sleep, which could
be either SWS or REMS.

To confirm that our piezoelectric system provides an accurate
respiratory trace during sleep, we compared the piezo signal to
an impedance pneumograph output (Fig. 1). Validation of the
piezoelectric signal as a sleep scoring marker was achieved by
comparing the visual scoring of the piezoelectric signal with si-
multaneously recorded EEG/EMG traces as shown in Fig. 2. Al-
though we had initial concern that quiet wake might produce res-
piratory traces similar to those during sleep, it turns out that mice
spend extremely little time in such a quiet state. A complete
lack of nonrespiratory movements is almost always indicative
of sleep, since during even quiet wake the mouse is making pos-
tural adjustments, head movements, or grooming that are picked
up by the very sensitive piezoelectric film. This was clear from
visual observations of mice, but is also supported by the results
we present here.

Visual scoring of the piezoelectrical signal is tedious and
time consuming; hence, our system automates the scoring using
pattern recognition and statistical learning techniques. Previous
work has been done for the extraction of periodic components
from signals using Fourier and wavelet analysis [6], periodicity
transforms [7], and singular value decomposition [8], [9]; how-
ever, none of that work was concerned with the classification of
the signals as “regular” or “irregular” in the sense we defined
before. In [10], they developed an optimal Bayes detector for
certain periodic waveforms that requires a priori knowledge of
the periodic waveform, which we do not have in our applica-
tion. In [11] and [12], they used measures of similarity of wave-
forms in a neighborhood of the signal to identify the period and
amplitude of periodic components; our techniques described in
Section III-B are in the same spirit of that work, where we used
the affine invariant pseudometric in [13] to measure similarity
between waveforms. It is important to note that the shapes of the
regular waveforms corresponding to respiration vary consider-
ably throughout the record, even within 1 s. So, although our
problem might look simple, it turned out that signal sections
regarded as “regular” by the human were not straightforward
to characterize mathematically, especially near transitions from
regular to irregular segments.

The paper is structured as follows: In Section II, we present
the structure of the overall system which consists of two parts,
the Feature Extractor explained in Section III, and the Clas-
sifier, described in Section IV. The different experiments per-
formed and their results are explained in Section V, followed
by the conclusions in Section VI.

II. SYSTEM OVERVIEW

The automated sleep scoring system is designed to classify the
piezoelectric signals as “Sleep” or “Wake” with reliability equal
to, or greater than, scoring by visual inspection. The transducer
consisted of a piece of piezoelectric film (Measurement Special-
ties, Inc., Wayne, Pennsylvania). The piezo film was composed
of PVDF polymer 52 m thick and coated with a thin layer of
NiCu (part number – 0-1000420-0). The surface area is approx-
imately 7.5 cm 15 cm. Two such films were placed side by
side and wired in series (total cage flooring is, therefore, 15 cm

15 cm). Piezoelectric output was amplified and filtered with
steep cut-offs below 0.5 Hz and above 15 Hz. The signal was
converted using an A-D board from National Instruments, Inc.
(Austin, Texas – part number 778075-01), using a sampling rate
of 100 Hz. The signal input was processed and graphically dis-
played using commercially available software (LabView, Na-
tional Instruments). Signal analysis was performed using the al-
gorithms described in Sections III and IV.

EEG/EMG signal scoring is typically based on 4–s or 10-s
epochs. We chose a 1-s epoch resolution for the analysis of the
piezo signals. Each epoch was deemed to correspond to sleep if
it contained a regular periodic-like signal characteristic of res-
piratory movement; a 1-s epoch that lacked a regular periodic
component was deemed to be wake. The raw signal was initially
visually scored by a trained sleep researcher.

The rules that the human expert follows in the classification
of 1-s epochs as sleep or wake are very hard to specify and are
rather arbitrary. This makes the automated classification process
suitable for the use of a classifier that learns from examples, as
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Fig. 3. Example of 8-s piezoelectric signal window used by the system to score the 1-s epoch in the center. Regions where the signal is regular are deemed sleep,
whereas irregular sections are deemed wake.

opposed to one that would use a set of predefined (knowledge
based) rules. Our classification system consists of two parts: the
feature extractor and the classifier. The feature extractor quan-
tifies certain characteristics of the signal by generating a feature
vector for each 1-s epoch. Each component of the feature vector
is a function of the signal contained in an 8-s window centered
around that designated 1-s epoch. The feature vector is then fed
to the classifier, which maps it into a binary label corresponding
to sleep or wake. The classifier is implemented with a neural
network, which is trained with a representative large sample of
data scored by a human expert.

III. FEATURE EXTRACTION

The objective of the feature extractor is to produce for each
1-s epoch a collection of features that quantify certain character-
istics of the signal to enable discrimination between sleep and
wake. The features are stacked into a feature vector that is
used as input to the classifier. The feature vector allows for en-
coding of some domain knowledge that is difficult for the classi-
fier to recognize using raw data alone. The usual breathing rate
of mice is between 2 and 4 Hz, hence, the breathing cycles are
up to one-half second long. In order to identify these waveforms,
the feature extractor uses a context data window of eight ss, cen-
tered around the 1-s epoch to be classified, as shown in Fig. 3.

All of the features are designed based on heuristic arguments.
We started with a basic set of features based on Fourier and
wavelet analysis complemented with several time domain fea-
tures. We then sought the subset of those features to achieve
the best classification accuracy. Each feature subset we tried
was evaluated using the best classifier we could obtain for that
subset; parameters involved in the feature extraction were ad-
justed using a south-well relaxation technique. Although this
was highly computational intensive, it provided an effective way
to select a good feature set, which we describe next.

We show intuitively how each feature gives some infor-
mation not captured by the others. We denote by

the 8-s context signal window centered around
the 1-s epoch under consideration, which corresponds to

. Since the magnitude of the signals from the
recordings varies a lot, and has minimal effect on the scoring

decision used by the experts, all the features were designed to
be scale invariant.

A. Features Based on Fourier Techniques

The obvious immediate candidates for feature extraction are
Fourier and wavelet analysis. We expect that in the case of sleep
signals, most of the spectral power of the signal is concentrated
in the lower frequencies corresponding to breathing rates,
whereas in wake, the animal moves and produces high-fre-
quency signals. So we computed the 200-point DFT of the
signal in the 2-s window centered around the 1-s epoch in con-
sideration (The signal was premultiplied by a Hanning window
before calculating its DFT). The signal was sampled at 100 Hz,
hence, we had 0.5 Hz frequency bins, and since the piezoelec-
tric output was filtered above 15 Hz, we restricted our attention
to for . The features are intended to be scale
invariant, hence, the DC term was dropped and the power
spectrum was normalized, obtaining ,

. Using the values directly as components
of our feature vector proved insufficient to achieve enough
accuracy; mostly because the spectral features were not suitable
to classify epochs near transitions due to the limited time
resolution using a 2-s window; using a shorter window did
not improve the performance since frequency resolution was
decreased and less context regularity information was included.
Speculating that high dimensionality of the power spectrum
vector could be a problem for the classifier, we tried using
principal components analysis to reduce its dimensionality; this
however, did not provide a significant improvement.

The percentage of spectral power corresponding to breathing
frequencies (2–4 Hz) was considered too, but this was not a useful
feature since the complexity of many waveforms made the power
spectra of the signal to spread outside the breathing frequency
range. This suggested the design of other features to characterize
the spectrum distribution. Observing that , we
can regard as a probability mass function and use its cen-
troid as a feature, the frequency centroid tended to
have smaller values for sleep compared to wake episodes. The
spectrum of sleep signals is likely to be concentrated into a few
sharp spikes, whereas for wake, is more spread out; so we used
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Fig. 4. Example of peaks in the piezo signal found by the peak-detection algorithm and description of the regions used for the peaks statistics calculation. Notice
the regularity in amplitude and interspacing for the peaks in the right half corresponding to sleep, versus the irregularity in the left half corresponding to a wake
episode.

, the entropy of , as a measure of spectrum
spread. Since the entropy of a probability distribution is higher
when it is closer to the uniform distribution, and smaller when it
consists of a few spikes, the entropy of tended to have smaller
values for sleep than for wake cases. Other more sophisticated
functions of the Fourier spectrum were considered, such as
scaled transforms in frequency [14] and phases of integrals of
the bispectrum [15]. Also, in an attempt to counteract the limited
frequency-time resolution of Fourier analysis, feature extraction
was done with the wavelet coefficient using Db10, Daubechies
compact support orthogonal wavelet with 20 taps [6]. Using only
these features based on Fourier and wavelet analysis surprisingly
gave limited results (with error rates often exceeding 20%); thus,
other features were designed based on time domain analysis.
When combined with the time domain features, the frequency
centroid and frequency entropy were the most effective trans-
form domain features, constituting the first two components

and , respectively, of the feature vector implemented in
our system. The other features based on Fourier and wavelet
analysis did not survive the feature selection process as they
seemed to impair the ability of the classifier to generalize. This
was due perhaps to their relatively high dimensionality. Next,
we describe the features based on time domain analysis that
were included in the final feature vector.

B. Waveform Similarity Features

These features are based on the similarity between waveforms
in the 1-s epoch and waveforms in the vicinity, and were de-
signed along the same spirit in [11] and [12]. Let be the
vector corresponding to the signal segment samples long,
centered at the sample of the context window. Using
a distance criterion , we compare the central waveform

to the waveforms in a neighborhood around it, and de-
fine as a feature the minimum distance found, i.e.,

This feature tended to have low values for sleep epochs and
higher values for wake cases. Since we were interested in shape
similarity only, the distance criterion used was the affine
invariant pseudometric defined in [13], which is the minimum

euclidean distance distance between and all affine transforma-
tions on . The search interval chosen for is based on the fact
that the period of breathing waveforms ranges from 0.25 s to 1
s. The interval search for is set to consider segments that are
1–1.5 segment lengths apart from the central one. The value of

for which the minimum distance was found is an estimate of
the period of the signal when regularity is present. This period
estimate is our second waveform similarity feature , and it is
used further as a parameter for the extraction of the adaptive fil-
tering feature explained later.

C. Features Based on Extrema

The features previously explained still proved to be insuffi-
cient for our classification task. This was because in order for
the signal to be scored as sleep by the human experts, it is often
sufficient for the signal to exhibit a regular pattern of “peaks”
uniformly spaced and having approximately the same “ampli-
tude,” even if the corresponding waveforms are dissimilar. For
this reason, we developed an algorithm to identify the local ex-
trema regarded as peaks by a human expert, and then compute
statistical measures of the uniformity in their time separation
and height, constituting our set of features based on extrema.

1) Finding the Extrema: Trying to mimic the human experts,
we decided upon the following methodology for identifying ex-
trema they regard as peaks. The methodology for maxima and
minima are symmetric, so we will only describe it for maxima.
We divide the signal into 1-s segments overlapping by 50%. For
each signal segment we calculate its mean and standard de-
viation , and mark off regions with a signal value larger than
the threshold . The maximum signal point in each of these
regions was considered a peak. We then prune the set of peaks
found with the criteria that if multiple peaks lie within a 0.1-s
interval, we keep only the largest one. Peaks corresponding to
minima are identified in an analogous way. An example of the
above process is shown in Fig. 4.

2) Peaks Statistics: Once the peaks in the signal are detected,
the next step is to measure the uniformity in amplitude and
spacing between the peaks in the following 4-s signal segments:
the left half of the context window, the central 4-s segment, and
the right half. In many cases of sleep epochs, the peak regularity
is only observed for either the maxima or the minima, hence,
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Fig. 5. Diagram of the adaptive linear predictor used to obtain a measure of
predictability of the piezo signal. Predictability is regarded as a feature indica-
tive of sleep episodes.

they were treated separately for peak regularity measurement.
To measure uniformity in amplitude of a set of peaks, we use
the ratio of their standard deviation to their mean, also known as
the standard coefficient. This is a unitless measure of variability,
so the smaller this number, the more uniform the amplitude is.
For each of the three segments described above, the standard co-
efficient for their maxima is computed. The minimum of those
coefficients defines , our first feature based on extrema. Re-
peating this procedure for their minima, we obtain the next fea-
ture . Substituting amplitudes with time separation between
consecutive peaks in the above calculations, we obtain two more
features and as measures of uniform spacing for maxima
and minima, respectively. The rationale for these features based
on peaks is that sleep epochs will have low values for one or
several of these features, while wake epochs will tend to have
higher values.

D. Feature Based on Adaptive Prediction

The features described so far proved to be very good, but not
always sufficient to classify an epoch, especially near transi-
tions. For example, for the three epochs in the center of Fig. 4
the features based on Fourier and on extrema will be rather
similar, even though two of those epochs correspond to wake
and the third one to sleep. The waveform similarity feature
may not be too useful either since the waveform in the sleep
epoch is not similar to the next waveforms. Hence, one more
feature was designed to alleviate this problem. When the signal
exhibits a regular pattern or periodicity, it is reasonable to ex-
pect a good linear prediction of the signal from previous sam-
ples. Based on this heuristic argument, we decided to use a
measure of the signal’s predictability as our last feature. Since
the signal is nonstationary, an adaptive linear predictor [16],
[17] is applied to the signal as shown in Fig. 5. The output
of the adaptive filter is given by , where

, is the prediction time, and
. The weight vector is adapted according to the

Normalized LMS algorithm

where is an adaptation constant.1 For each epoch, the mea-
sure of predictability was defined as the ratio of the power
of the error to the power of the signal in that epoch.
Small values of indicate high predictability, high values in-
dicate low predictability. It is clear that for the calculation of

1Since all the signal sections with values very close to zero are removed be-
fore the feature extraction, the magnitude square kX k is never close to zero,
hence, instability of the algorithm was avoided.

for a given epoch, the algorithm is only needed to run with the
data in the first 4.5 s of the context window. The initial weight
vector is set to the least squares solution of the prediction
problem corresponding to that data. The predictability of the
signal from past samples can be low for epochs lying in tran-
sitions from wake to sleep, as is the case in Fig. 4. However, the
signal at the center could be predicted well from “future” sam-
ples, hence, we decided to drive the adaptive linear predictor
with the time-reversed signal and obtain its mea-
sure of predictability . Our last feature was then defined as

. Since a good choice for is the period of
the signal when it is periodic, we decided to make . The
values of and were tweaked according to a south-well relax-
ation procedure, resulting in and for the best
classification accuracy. This feature was useful in cases where
the other features were insufficient for the discrimination be-
tween wake and sleep near transitions.

IV. CLASSIFIER

The feature vector for a given 1-s epoch is fed to the clas-
sifier which outputs a binary label corresponding to sleep or
wake. The classifier is implemented with a feedforward artifi-
cial neural network (ANN),2 trained and tested with data scored
visually by human experts. The data set consisted of the feature
vectors obtained from every 1-s epoch and their associated label
assigned by the expert. Since we want the output of the ANN to
be mapped to a binary label, its output layer consisted of a single
neuron with a hyperbolic tangent activation function ,
and the desired response for each input feature vector was set
to if it was labeled as sleep by the expert, and to if re-
garded as wake. We partitioned our data set into three disjoint
sets: a training set, a validation set and a test set. The training
set was used to train the classifier (neural network) using the
Levenberg-Marquadt algorithm [19], [20]. After each iteration
of the training process, the missclasification rate of the classifier
on the Validation set was calculated. Training was stopped when
the misclassification rate on the validation set did not improve
for 20 consecutive iterations. The misclassification rate for the
Test set was used as an estimate for the performance of the
trained classifier with data it has never been exposed to. The ar-
chitecture of the neural network was designed using the network
growing technique [18, p. 218]; we started with a single neuron,
and as it was insufficient to achieve good results, we added a
hidden layer; we increased the number of neurons in the hidden
layer until adding more neurons did not improve the classifi-
cation task. This procedure yielded a two-layer ANN, with 20
neurons in the first (hidden) layer and one neuron in the second
(output) layer.3 All neurons used hyperbolic tangent activation
functions and a bias weight. The ANNs were implemented and
trained with the Neural Networks Toolbox from Matlab.

Once the neural network was trained, it was used as a binary
classifier by taking the sign of its output. If its output for a given
feature vector was positive, a sleep label was assigned to the
corresponding 1-s epoch; if its output was negative a wake label
was given.

2also known as feedforward multilayer perceptron [18].
3Adding one more hidden layer did not offer an advantage over the two-layer

structure.
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Fig. 6. Percentage of sleep time scored by human visual observation of signals versus automated scoring.

TABLE I
AGREEMENT MATRIX FOR TEST SET IN EXPERIMENT 1

We also used Multiple Additive Regression Trees (MART)
[21], [22] using the software described in [23] to benchmark
our ANN. The MART classifier was particularly useful during
the feature selection, since it provided measures of their “im-
portance” in the classification tree; suggesting which features to
keep, to remove, or to improve. Once our final feature set was
defined, the results provided by MART were about the same as
with ANNs. For reasons of implementation, we chose the ANN
as the classifier for the final system.

V. EXPERIMENTS AND RESULTS

Piezo-electric signals from eight different mice were col-
lected with similar recording conditions and prefiltering as
described in Section II. The mice were commonly used inbred
strains: C57BL/6J, AKR/J, and DBA/2J. These data included
both sleep and wake episodes, i.e., regular and nonregular
signal waveforms. Each mouse was recorded for 24 hrs, and
for seven of the mice, the first 10 min of each hour was scored
by a human expert. This provided 14 400 1-s scored epochs
per mouse. For the eighth mouse, the entire 24 hrs (86 400
1-s epochs) was scored by another human expert. To test the
validity of our automated piezo system for distinguishing
sleep versus wake, we first tested automated scoring versus
human scoring of the same piezo signals (experiment 1 and 2,
below). We next compared the automated piezo scoring versus
EEG/EMG scoring in mice recorded simultaneously with both
systems (experiment 3).

A. Experiment 1

For each of the first seven mice, 80% of the wake and sleep
epochs were chosen at random to build a training set, the re-
maining 20% was used for validation. Wake vs sleep was deter-
mined visually by the regularity of the piezo signal based on our
experience with simultaneous EEG/EMG recordings and visual
observations of the mouse. The data from the 8th mouse (24
hours of data scored by a human expert) was used as the Test
set. The accuracy achieved by the classifier trained in this exper-
iment was 95.7% on the test set; the specificity and sensitivity
ranged between 95% and 96% for both sleep and wake epochs,
as shown in the agreement matrix obtained in Table I.

The percentage of time the rodent is sleeping as opposed to
awake is an important statistic for sleep studies, and is under ge-
netic control [24]. Hence, we divided the 24 hrs of data from the
eight mice into 15-min nonoverlapping intervals, and for each
of them we calculated the percentage of 1-s epochs the mouse
was sleeping according to both the human score and the auto-
mated score given by the classifier. Fig. 6 shows the ability of
the automated system to track the percentage of sleep behavior
of the mouse. This indicates that the performance of our system
is consistent through time, with errors distributed in a more or
less uniform manner throughout the whole recording.

B. Experiment 2

In order to test the robustness of the classifier training
methodology against subject variability, we designed the fol-
lowing experiment. The data from one of the first seven mice
was used as the Test set. The data from the remaining six mice
was partitioned at random in a 80%-20% proportion as de-
scribed in experiment 1, to build the training and validation set.
In this manner, for each mouse a classifier was trained with data
from the remaining mice. The classification accuracy obtained
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TABLE II
OVERALL ACCURACY, SENSITIVITY AND SPECIFICITY IN EXPERIMENT 2

in the test mouse for each classifier is shown in Table II. The
overall accuracy for all mice was about the same as in the pre-
vious experiment. Sensitivity and specificity for sleep epochs
was mostly between 95% and 96%, whereas for wake, both
sensitivity and specificity were in the range of 94% to 96%,
with a few cases around 93%. The test sets used in experiment
2 contained between 7000 and 8000 epochs each, and although
they are approximately six times smaller than the test set used
in experiment 1, the results obtained showed good consistency
of our system across subjects. Our results illustrate the ability
of our system to perform well on recordings it has never been
exposed to, given that it has been trained with data from a
variety of different subjects under similar recording conditions.
This indicates that further training of our system should only be
necessary after significant changes in the recording conditions
have occurred, such as hardware changes or noisier outputs of
the piezoelectric signal. We should also mention that a thorough
examination of the epochs where mistakes of the automated
classifier were observed indicated that most of the errors were
made in the state transitions; this was no surprise since even the
human scoring of such epochs can be rather ambiguous.

The results in experiments 1 and 2 show that the accuracy of
our automated classification system is between 95% and 96%
in the test sets, comparable to the scoring agreement between
human experts which is around 95%.

C. Experiment 3

As another test of our system, we next validated our piezo
system against the gold standard of sleep/wake scoring by
comparing EEG/EMG and piezo signals simultaneously from
the same mice. EEG/EMG methodologies were as described
in Franken et al. [24], while piezo scoring was done by the
automated classifier as described above. Fig. 7 shows combined
data from all eight mice. Both EEG/EMG and piezo systems
were used for a simple two state classification of sleep versus
wake. Overall, EEG/EMG and piezo scoring matched approxi-
mately 90% of the time. This similarity is quite good since even
EEG/EMG scoring of the same record by two different indi-
viduals will differ to some extent. This result also supports our
earlier contention that quiet wake is not a substantial problem
for our system presumably because of the subtle movements
mice make during quiet wake that are picked up by the piezo

Fig. 7. Simultaneous piezo versus EEG/EMG output was classified and com-
pared as described in the text. The graph represents a compilation of data from
eight different mice. The y -axis shows the percentage of time (in one hour bins)
classified as sleep by the piezo system (open circles) and by EEG/EMG scoring
(closed circles). EEG/EMG was done according to Franken et al. 1999. Note
the high correspondence between the two methods, supporting the fact that the
piezo system can accurately distinguish sleep from wake.

film, and also because periods of extremely quiet wake are
relatively rare in mice. Occasional movements occur during
sleep as well, but to a much lesser degree.

D. Experiment 4

Lastly, as a first test of our system for the screening of sleep
and wake promoting drugs, we chose the commonly used stim-
ulant caffeine. As expected, caffeine injection (20 mg/kg, ip)
dramatically increased wakefulness following the injection for
three to four hours, and this was accurately reflected by the au-
tomated scoring with the piezo system as shown in Fig. 8. The
automated scoring was consistent with hand scoring of the piezo
signals and visual observations of the mice, but no simultaneous
EEG/EMG recordings were conducted in this study.

VI. CONCLUSION AND FUTURE WORK

We have successfully developed an automated classifier of
the piezoelectric signal into sleep and wake episodes. Its accu-
racy is comparable to the percentage agreement between human
scorers. Implementation of this technology for high-throughput
screening of sleep and wake in mice has already begun at
the Tennessee Mouse Genome Consortium [5] to investigate
genetic aspects of sleep and sleep disorders using both mutant
mice and large sets of recombinant inbred strains. However, the
piezo system is still an initial screening tool that may require
EEG/EMG follow-up studies on the most interesting mice,
since it is possible that certain genetic alterations may decrease
waking movements or increase sleep movements in a way
that increases classification errors (i.e., sleep/wake scoring).
EEG/EMG follow-up studies would also provide details on
REM sleep versus SWS that has not yet been achieved using
our piezo signal (but, see next paragraph). On the plus side, our
piezo system may have certain advantages over EEG/EMG.
In addition to the identification of genes that influence total
sleep time, sleep bout durations, circadian, and time of day
variables, etc., we should also be able to easily spot any periods
of interrupted breathing during sleep since the piezo signal
provides an accurate respiratory trace during sleep. Our system
should also be useful for rapid initial screens of sleep and
wake promoting drugs, but again with the caveat that certain
drugs may alter movements during wake or sleep in a way that
increases classification errors. In general, this system should
allow the analysis of a large number of rodents in a relatively
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Fig. 8. Piezo scoring of increased wakefulness following caffeine in mice (20 mg/kg, ip). The time-course plot shows average amount of sleep in minutes per
30-min bin in each mouse on the day before caffeine injection, the day of injection, and the day following injection (mean of four mice, error bar = SEM).

short time, which was previously not feasible due to the time
and cost involved with traditional EEG/EMG methodology.

It has been known for decades that respiration becomes less
regular during REMS than SWS raising the possibility that we
can also distinguish these states with our piezo system. This
change in respiratory pattern is often visually apparent in our
piezo signals, however, the change is quite subtle. Therefore,
in this initial system we have simply differentiated sleep from
wake. A high-throughput system that can make even this simple
distinction is still of great value as an initial screen in studies
requiring large numbers of mice. Follow-up studies using EEG
and EMG can also be done. We will also continue development
of this system with the goal of distinguishing SWS and REMS
in the next generation system.

It is important to note that some of the techniques we used
for feature extraction can be used in other pattern recognition
problems where the objective is to detect regular patterns or pe-
riodicity in signals, regardless of the shape of the patterns. Fur-
ther refinement of these approaches might allow us to distin-
guish different types of waking behavior such as grooming and
rearing that appear to have unique signal characteristics. This
could make our piezo system even more useful in a wide va-
riety of behavioral studies.
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